\[ y'(x)=\frac {y(x) \text {sech}\left (\frac {1}{x+1}\right ) \left (x^3 y(x)+x^2 y(x)-x^2-x-x \cosh \left (\frac {1}{x+1}\right )+\cosh \left (\frac {1}{x+1}\right )\right )}{(x-1) x} \] ✓ Mathematica : cpu = 3.10096 (sec), leaf count = 157
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x\frac {-\text {sech}\left (\frac {1}{K[1]+1}\right ) K[1]^2-\text {sech}\left (\frac {1}{K[1]+1}\right ) K[1]-K[1]+1}{(K[1]-1) K[1]}dK[1]\right )}{-\int _1^x\frac {\exp \left (\int _1^{K[2]}\frac {-\text {sech}\left (\frac {1}{K[1]+1}\right ) K[1]^2-\text {sech}\left (\frac {1}{K[1]+1}\right ) K[1]-K[1]+1}{(K[1]-1) K[1]}dK[1]\right ) \left (\text {sech}\left (\frac {1}{K[2]+1}\right ) K[2]^3+\text {sech}\left (\frac {1}{K[2]+1}\right ) K[2]^2\right )}{(K[2]-1) K[2]}dK[2]+c_1}\right \}\right \}\] ✓ Maple : cpu = 0.437 (sec), leaf count = 112
\[\left \{y \left (x \right ) = \frac {{\mathrm e}^{\int \frac {-x^{2}-x +\left (-x +1\right ) \cosh \left (\frac {1}{x +1}\right )}{\left (x -1\right ) x \cosh \left (\frac {1}{x +1}\right )}d x}}{c_{1}+\int -\frac {\left (x +1\right ) x \,{\mathrm e}^{\int \frac {-x^{2}-x +\left (-x +1\right ) \cosh \left (\frac {1}{x +1}\right )}{\left (x -1\right ) x \cosh \left (\frac {1}{x +1}\right )}d x}}{\left (x -1\right ) \cosh \left (\frac {1}{x +1}\right )}d x}\right \}\]