\[ y'(x)=\frac {y(x)}{x \left (x^3 y(x)^4+x^2 y(x)^3+y(x)-1\right )} \] ✓ Mathematica : cpu = 0.229709 (sec), leaf count = 67
\[\text {Solve}\left [\text {RootSum}\left [\text {$\#$1}^3 y(x)^3+\text {$\#$1}^2 y(x)^2+1\& ,\frac {\text {$\#$1} y(x) \log (x-\text {$\#$1})+\log (x-\text {$\#$1})}{3 \text {$\#$1} y(x)+2}\& \right ]+y(x)-\log (x)=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.59 (sec), leaf count = 32
\[\left \{-c_{1}+\int _{}^{x y \left (x \right )}\frac {1}{\left (\textit {\_a}^{3}+\textit {\_a}^{2}+1\right ) \textit {\_a}}d \textit {\_a} -y \left (x \right ) = 0\right \}\]