\[ y'(x)=\frac {x \left (x^2 y(x)^3+\left (x^2+1\right )^{3/2} y(x)^2+x^2 \left (x^2+1\right )^{3/2}+\left (x^2+1\right )^{3/2}+y(x)^3\right )}{\left (x^2+1\right )^3} \] ✓ Mathematica : cpu = 0.587979 (sec), leaf count = 148
\[\text {Solve}\left [-\frac {19}{3} \text {RootSum}\left [-19 \text {$\#$1}^3+6 \sqrt [3]{38} \text {$\#$1}-19\& ,\frac {\log \left (\frac {\frac {3 x y(x)}{\left (x^2+1\right )^2}+\frac {x}{\left (x^2+1\right )^{3/2}}}{\sqrt [3]{38} \sqrt [3]{\frac {x^3}{\left (x^2+1\right )^{9/2}}}}-\text {$\#$1}\right )}{2 \sqrt [3]{38}-19 \text {$\#$1}^2}\& \right ]=\frac {19^{2/3} \left (\frac {x^3}{\left (x^2+1\right )^{9/2}}\right )^{2/3} \left (x^2+1\right )^3 \log \left (x^2+1\right )}{9 \sqrt [3]{2} x^2}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.126 (sec), leaf count = 48
\[\left \{y \left (x \right ) = \frac {\left (19 \RootOf \left (3 c_{1}-1296 \left (\int _{}^{\textit {\_Z}}\frac {1}{361 \textit {\_a}^{3}-432 \textit {\_a} +432}d \textit {\_a} \right )+2 \ln \left (x^{2}+1\right )\right )-6\right ) \sqrt {x^{2}+1}}{18}\right \}\]