\[ y'(x)=\frac {(y(x)+1) (2 y(x)+1)}{x \left (2 x y(x)^4+x y(x)^3-2 y(x)-2\right )} \] ✓ Mathematica : cpu = 0.687373 (sec), leaf count = 56
\[\text {Solve}\left [-\frac {1}{8} y(x)^2+\frac {3 y(x)}{8}-\frac {1}{2 x (2 y(x)+1)}-\frac {1}{2} \log (y(x)+1)+\frac {1}{16} \log (2 y(x)+1)=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.318 (sec), leaf count = 54
\[\left \{y \left (x \right ) = \frac {{\mathrm e}^{\RootOf \left (8 c_{1} x \,{\mathrm e}^{\textit {\_Z}}-2 \textit {\_Z} x \,{\mathrm e}^{\textit {\_Z}}+16 x \,{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {{\mathrm e}^{\textit {\_Z}}}{2}+\frac {1}{2}\right )+7 x \,{\mathrm e}^{\textit {\_Z}}-8 x \,{\mathrm e}^{2 \textit {\_Z}}+x \,{\mathrm e}^{3 \textit {\_Z}}+16\right )}}{2}-\frac {1}{2}\right \}\]