\[ y'(x)=\frac {y(x) \left (x^4+3 x y(x)^2+3 y(x)^2\right )}{x (x+1) \left (6 y(x)^2+x\right )} \] ✓ Mathematica : cpu = 0.687405 (sec), leaf count = 90
\[\left \{\left \{y(x)\to -\frac {\sqrt {x} \sqrt {W\left (\frac {6 (x+1)^2 e^{x^2-2 x-3+2 c_1}}{x}\right )}}{\sqrt {6}}\right \},\left \{y(x)\to \frac {\sqrt {x} \sqrt {W\left (\frac {6 (x+1)^2 e^{x^2-2 x-3+2 c_1}}{x}\right )}}{\sqrt {6}}\right \}\right \}\] ✓ Maple : cpu = 0.736 (sec), leaf count = 60
\[\left \{\frac {1}{\frac {6}{x}+\frac {1}{y \left (x \right )^{2}}} = \frac {\left ({\mathrm e}^{\RootOf \left (x^{2} {\mathrm e}^{\textit {\_Z}}+3 c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}-2 x \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {\left ({\mathrm e}^{\textit {\_Z}}+9\right ) x}{2 \left (x +1\right )^{2}}\right )+9\right )}+9\right ) x}{54}\right \}\]