\[ y'(x)=\frac {e^{-1/x} \left (\text {$\_$F1}\left (e^{\frac {1}{x}} y(x)\right )+\frac {e^{\frac {1}{x}} y(x)}{x}\right )}{x} \] ✓ Mathematica : cpu = 1.55982 (sec), leaf count = 158
\[\text {Solve}\left [\int _1^{y(x)}-\frac {\text {$\_$F1}\left (e^{\frac {1}{x}} K[2]\right ) \int _1^x\left (\frac {e^{\frac {1}{K[1]}}}{K[1]^2 \text {$\_$F1}\left (e^{\frac {1}{K[1]}} K[2]\right )}-\frac {e^{\frac {2}{K[1]}} K[2] \text {$\_$F1}'\left (e^{\frac {1}{K[1]}} K[2]\right )}{K[1]^2 \left (\text {$\_$F1}\left (e^{\frac {1}{K[1]}} K[2]\right )\right ){}^2}\right )dK[1]+e^{\frac {1}{x}}}{\text {$\_$F1}\left (e^{\frac {1}{x}} K[2]\right )}dK[2]+\int _1^x\left (\frac {e^{\frac {1}{K[1]}} y(x)}{K[1]^2 \text {$\_$F1}\left (e^{\frac {1}{K[1]}} y(x)\right )}+\frac {1}{K[1]}\right )dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.158 (sec), leaf count = 26
\[\left \{y \left (x \right ) = \RootOf \left (c_{1}+\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_F1} \left (\textit {\_a} \right )}d \textit {\_a} -\ln \left (x \right )\right ) {\mathrm e}^{-\frac {1}{x}}\right \}\]