\[ y'(x)=\frac {-x^6+3 x^4 y(x)^2+x^4-3 x^2 y(x)^4-2 x^2 y(x)^2+y(x)^6+y(x)^4+x+1}{y(x)} \] ✓ Mathematica : cpu = 0.349855 (sec), leaf count = 106
\[\text {Solve}\left [\frac {1}{2} \text {RootSum}\left [-\text {$\#$1}^3+3 \text {$\#$1}^2 y(x)^2+\text {$\#$1}^2-3 \text {$\#$1} y(x)^4-2 \text {$\#$1} y(x)^2+y(x)^6+y(x)^4+1\& ,\frac {\log \left (x^2-\text {$\#$1}\right )}{3 \text {$\#$1}^2-6 \text {$\#$1} y(x)^2-2 \text {$\#$1}+3 y(x)^4+2 y(x)^2}\& \right ]-x=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.511 (sec), leaf count = 63
\[\left \{-c_{1}+x +\int _{\textit {\_b}}^{y \left (x \right )}\frac {\textit {\_a}}{-\textit {\_a}^{6}+3 \textit {\_a}^{4} x^{2}-3 \textit {\_a}^{2} x^{4}+x^{6}-\textit {\_a}^{4}+2 \textit {\_a}^{2} x^{2}-x^{4}-1}d \textit {\_a} = 0\right \}\]