\[ y'(x)=\frac {4 x^6 y(x)^3+2 x^5 y(x)+2 x^5+3 x^4 y(x)^2+\frac {x^3}{2}+\frac {3}{4} x^2 y(x)+\frac {1}{16}}{x^6 \left (4 x^2 y(x)+4 x^2+1\right )} \] ✓ Mathematica : cpu = 0.236031 (sec), leaf count = 106
\[\left \{\left \{y(x)\to -\frac {4 x^2+1}{4 x^2}+\frac {1}{64 x^8 \left (\frac {1}{64 x^8}-\frac {1}{x^8 \sqrt {\frac {8192}{x}+c_1}}\right )}\right \},\left \{y(x)\to -\frac {4 x^2+1}{4 x^2}+\frac {1}{64 x^8 \left (\frac {1}{64 x^8}+\frac {1}{x^8 \sqrt {\frac {8192}{x}+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.043 (sec), leaf count = 87
\[\left \{y \left (x \right ) = \frac {-4 x^{2}-\sqrt {\frac {c_{1} x +2}{x}}-1}{4 \left (\sqrt {\frac {c_{1} x +2}{x}}+1\right ) x^{2}}, y \left (x \right ) = \frac {4 x^{2}-\sqrt {\frac {c_{1} x +2}{x}}+1}{4 \left (\sqrt {\frac {c_{1} x +2}{x}}-1\right ) x^{2}}\right \}\]