\[ y'(x)=\frac {\left (-y(x)+\sqrt {y(x)}+x\right ) y(x)^{3/2}}{x^3-3 x^2 y(x)+3 x y(x)^2+x y(x)^{3/2}-y(x)^3-y(x)^{5/2}+y(x)^2} \] ✓ Mathematica : cpu = 0.355592 (sec), leaf count = 251
\[\left \{\left \{y(x)\to \text {Root}\left [\text {$\#$1}^9 c_1{}^4-6 \text {$\#$1}^8 c_1{}^4 x+\text {$\#$1}^7 \left (15 c_1{}^4 x^2-6 c_1{}^2\right )+\text {$\#$1}^6 \left (-20 c_1{}^4 x^3+30 c_1{}^2 x-4+2 c_1{}^2\right )+\text {$\#$1}^5 \left (15 c_1{}^4 x^4-60 c_1{}^2 x^2+24 x-6 c_1{}^2 x+9\right )+\text {$\#$1}^4 \left (-6 c_1{}^4 x^5+60 c_1{}^2 x^3-60 x^2+6 c_1{}^2 x^2-36 x-6\right )+\text {$\#$1}^3 \left (c_1{}^4 x^6-30 c_1{}^2 x^4+80 x^3-2 c_1{}^2 x^3+54 x^2+12 x+1\right )+\text {$\#$1}^2 \left (6 c_1{}^2 x^5-60 x^4-36 x^3-6 x^2\right )+\text {$\#$1} \left (24 x^5+9 x^4\right )-4 x^6\& ,1\right ]\right \}\right \}\] ✓ Maple : cpu = 0.167 (sec), leaf count = 61
\[\left \{-\frac {c_{1} \left (-x +y \left (x \right )\right )^{\frac {3}{2}} y \left (x \right )^{\frac {3}{4}}+\left (x -y \left (x \right )-\sqrt {y \left (x \right )}\right ) \sqrt {-2 x +2 y \left (x \right )-\sqrt {y \left (x \right )}}}{\left (-x +y \left (x \right )\right )^{\frac {3}{2}} y \left (x \right )^{\frac {3}{4}}} = 0\right \}\]