\[ y'(x)=\frac {\frac {1}{16} x^3 y(x)^3-\frac {1}{2} x^2 y(x)^3-\frac {3}{8} x^2 y(x)^2+x y(x)^3+x y(x)^2+\frac {3}{4} x y(x)-\frac {1}{2}}{x (x y(x)-2 y(x)-2)} \] ✓ Mathematica : cpu = 0.234324 (sec), leaf count = 128
\[\left \{\left \{y(x)\to \frac {2}{x-2}+\frac {1}{16 x (x-2) \left (-\frac {1}{64}-\frac {e^{2 \left (\frac {1}{2} \log (2-x)-\frac {\log (x)}{2}\right )}}{\sqrt {2048 \log (x)+c_1}}\right )}\right \},\left \{y(x)\to \frac {2}{x-2}+\frac {1}{16 x (x-2) \left (-\frac {1}{64}+\frac {e^{2 \left (\frac {1}{2} \log (2-x)-\frac {\log (x)}{2}\right )}}{\sqrt {2048 \log (x)+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.059 (sec), leaf count = 67
\[\left \{y \left (x \right ) = \frac {2 \sqrt {c_{1}+8 \ln \left (x \right )}-8}{\sqrt {c_{1}+8 \ln \left (x \right )}\, x -4 x +8}, y \left (x \right ) = \frac {2 \sqrt {c_{1}+8 \ln \left (x \right )}+8}{\sqrt {c_{1}+8 \ln \left (x \right )}\, x +4 x -8}\right \}\]