\[ y'(x)=\frac {x^6+3 x^5 y(x)+3 x^4 y(x)^2+x^3 y(x)^3-2 x^3-3 x^2 y(x)-x y(x)^2-y(x)-2 x}{x \left (x^2+x y(x)+1\right )} \] ✓ Mathematica : cpu = 0.211762 (sec), leaf count = 80
\[\left \{\left \{y(x)\to -\frac {x^2+1}{x}+\frac {1}{x^2 \left (\frac {1}{x}-\frac {1}{x \sqrt {-2 x+c_1}}\right )}\right \},\left \{y(x)\to -\frac {x^2+1}{x}+\frac {1}{x^2 \left (\frac {1}{x}+\frac {1}{x \sqrt {-2 x+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.038 (sec), leaf count = 73
\[\left \{y \left (x \right ) = \frac {-\sqrt {c_{1}-2 x}\, x^{2}-x^{2}-1}{\left (\sqrt {c_{1}-2 x}+1\right ) x}, y \left (x \right ) = \frac {-\sqrt {c_{1}-2 x}\, x^{2}+x^{2}+1}{\left (\sqrt {c_{1}-2 x}-1\right ) x}\right \}\]