\[ y'(x)=\frac {y(x) \left (x^4 \log ^2(y(x))+2 x^4 \log (x) \log (y(x))+x^4 \log ^2(x)+x^3 \log ^2(y(x))+2 x^3 \log (x) \log (y(x))+x^3 \log ^2(x)+x \log ^2(y(x))+2 x \log (x) \log (y(x))+\log (y(x))+x \log ^2(x)+\log (x)-1\right )}{x} \] ✓ Mathematica : cpu = 0.285284 (sec), leaf count = 36
\[\left \{\left \{y(x)\to \frac {e^{-\frac {20 x}{4 x^5+5 x^4+10 x^2+20 c_1}}}{x}\right \}\right \}\] ✓ Maple : cpu = 0.41 (sec), leaf count = 145
\[\left \{y \left (x \right ) = x^{-\frac {20 c_{1}}{4 x^{5}+5 x^{4}+10 x^{2}+20 c_{1}}} x^{-\frac {10 x^{2}}{4 x^{5}+5 x^{4}+10 x^{2}+20 c_{1}}} x^{-\frac {5 x^{4}}{4 x^{5}+5 x^{4}+10 x^{2}+20 c_{1}}} x^{-\frac {4 x^{5}}{4 x^{5}+5 x^{4}+10 x^{2}+20 c_{1}}} {\mathrm e}^{-\frac {20 x}{4 x^{5}+5 x^{4}+10 x^{2}+20 c_{1}}}\right \}\]