\[ y'(x)=\frac {-24 x^{7/2} y(x)+\frac {24 x^{13/2}}{5}+14 x^{7/2}+40 x^{3/2}+\frac {8 x^9}{25}-\frac {12}{5} x^6 y(x)+\frac {12 x^6}{5}+24 x^4+6 x^3 y(x)^2-6 x^3 y(x)-6 x^3-60 x y(x)+30 \sqrt {x} y(x)^2-5 \sqrt {x} y(x)-5 y(x)^3+10 x-5 \sqrt {x}}{x \left (2 x^3-5 y(x)+10 \sqrt {x}-5\right )} \] ✓ Mathematica : cpu = 0.365493 (sec), leaf count = 112
\[\left \{\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (-\frac {1}{125 x}-\frac {1}{x \sqrt {-31250 \log (x)+c_1}}\right )}\right \},\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (-\frac {1}{125 x}+\frac {1}{x \sqrt {-31250 \log (x)+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.109 (sec), leaf count = 101
\[\left \{y \left (x \right ) = \frac {-2 x^{3}-10 \sqrt {x}+\left (2 x^{3}+10 \sqrt {x}\right ) \sqrt {c_{1}-2 \ln \left (x \right )}+5}{5 \sqrt {c_{1}-2 \ln \left (x \right )}-5}, y \left (x \right ) = \frac {2 x^{3}+10 \sqrt {x}+\left (2 x^{3}+10 \sqrt {x}\right ) \sqrt {c_{1}-2 \ln \left (x \right )}-5}{5 \sqrt {c_{1}-2 \ln \left (x \right )}+5}\right \}\]