\[ y'(x)=\frac {y(x) \left (y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} x^{\frac {2}{\log (x)+1}+3}+y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log ^2(x) x^{\frac {2}{\log (x)+1}+3}+2 y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log (x) x^{\frac {2}{\log (x)+1}+3}-e^{\frac {2 \log ^2(x)}{\log (x)+1}} x^{\frac {2}{\log (x)+1}+3}-e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log (x) x^{\frac {2}{\log (x)+1}+3}-1\right )}{x (\log (x)+1)} \] ✓ Mathematica : cpu = 1.32372 (sec), leaf count = 28
\[\left \{\left \{y(x)\to \frac {1}{\left (1+c_1 e^{\frac {x^5}{5}}\right ) (\log (x)+1)}\right \}\right \}\] ✓ Maple : cpu = 0.112 (sec), leaf count = 79
\[\left \{y \left (x \right ) = \frac {{\mathrm e}^{-\frac {x^{5}}{5}}}{\left (\ln \left (x \right )+1\right ) \left (\left (\ln \left (x \right )+1\right ) x^{-\frac {2 \ln \left (x \right )}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {-x^{5} \ln \left (x \right )-x^{5}+10 \ln \left (x \right )^{2}+\left (-5 \ln \left (x \right )-5\right ) \ln \left (\ln \left (x \right )+1\right )}{5 \ln \left (x \right )+5}}+c_{1}\right )}\right \}\]