\[ y'(x)=\frac {\csc \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{x}\right ) \left (-\frac {1}{2} x y(x) \sin \left (\frac {y(x)}{x}\right )-\frac {1}{2} y(x) \sin \left (\frac {y(x)}{x}\right )+x \sin \left (\frac {y(x)}{2 x}\right ) \sin \left (\frac {y(x)}{x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} x y(x) \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} y(x) \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} x y(x) \sin \left (\frac {3 y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} y(x) \sin \left (\frac {3 y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )\right )}{x (x+1)} \] ✓ Mathematica : cpu = 0.280139 (sec), leaf count = 19
\[\left \{\left \{y(x)\to x \sin ^{-1}\left (\frac {e^{c_1} x}{x+1}\right )\right \}\right \}\] ✓ Maple : cpu = 0.175 (sec), leaf count = 15
\[\left \{y \left (x \right ) = x \arcsin \left (\frac {c_{1} x}{x +1}\right )\right \}\]