\[ y'(x)=e^{-2 b x} y(x) \left (e^{b x} y(x)+e^{2 b x}+y(x)^2\right ) \] ✓ Mathematica : cpu = 0.463225 (sec), leaf count = 146
\[\text {Solve}\left [-\frac {1}{3} (9 b-7)^{2/3} \text {RootSum}\left [\text {$\#$1}^3 (9 b-7)^{2/3}-9 \text {$\#$1} b+6 \text {$\#$1}+(9 b-7)^{2/3}\& ,\frac {\log \left (\frac {3 e^{-2 b x} y(x)+e^{-b x}}{\sqrt [3]{(9 b-7) e^{-3 b x}}}-\text {$\#$1}\right )}{\text {$\#$1}^2 \left (-(9 b-7)^{2/3}\right )+3 b-2}\& \right ]=\frac {1}{9} x e^{2 b x} \left ((9 b-7) e^{-3 b x}\right )^{2/3}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.414 (sec), leaf count = 134
\[\left \{y \left (x \right ) = -\frac {{\mathrm e}^{b x}}{2}-\frac {\sqrt {\left (-4 b +3\right ) {\mathrm e}^{2 b x}}\, \tan \left (\RootOf \left (2 \textit {\_Z} \,{\mathrm e}^{b x}+c_{1} \sqrt {-\left (4 b -3\right ) {\mathrm e}^{2 b x}}-2 \sqrt {-\left (4 b -3\right ) {\mathrm e}^{2 b x}}\, x -\sqrt {-\left (4 b -3\right ) {\mathrm e}^{2 b x}}\, \ln \left (\frac {4 b \left (\tan ^{2}\left (\textit {\_Z} \right )\right )-3 \left (\tan ^{2}\left (\textit {\_Z} \right )\right )+4 b -3}{\left ({\mathrm e}^{b x}+\sqrt {-\left (4 b -3\right ) {\mathrm e}^{2 b x}}\, \tan \left (\textit {\_Z} \right )\right )^{2}}\right )\right )\right )}{2}\right \}\]