\[ y'(x)=\frac {(x y(x)+1) \left (x^2 y(x)^2+x^2 y(x)+x^2+2 x y(x)+x+1\right )}{x^5} \] ✓ Mathematica : cpu = 0.375672 (sec), leaf count = 103
\[\text {Solve}\left [-\frac {17}{3} \text {RootSum}\left [-17 \text {$\#$1}^3+3 \sqrt [3]{-34} \text {$\#$1}-17\& ,\frac {\log \left (\frac {\frac {x+3}{x^3}+\frac {3 y(x)}{x^2}}{\sqrt [3]{34} \sqrt [3]{-\frac {1}{x^6}}}-\text {$\#$1}\right )}{\sqrt [3]{-34}-17 \text {$\#$1}^2}\& \right ]=-\frac {1}{9} 34^{2/3} \left (-\frac {1}{x^6}\right )^{2/3} x^3+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.042 (sec), leaf count = 43
\[\left \{y \left (x \right ) = \frac {17 x \RootOf \left (3 c_{1} x +162 x \left (\int _{}^{\textit {\_Z}}\frac {1}{289 \textit {\_a}^{3}+54 \textit {\_a} -54}d \textit {\_a} \right )+2\right )-3 x -9}{9 x}\right \}\]