\[ y'(x)=\frac {x^3+2 x^2 y(x)-x y(x)-y(x)^2+x y(x) \log (x)}{x^2 (x+\log (x))} \] ✓ Mathematica : cpu = 0.95808 (sec), leaf count = 351
\[\left \{\left \{y(x)\to \frac {x^2 (x+\log (x)) \left (c_1 \left (\frac {\exp \left (-\frac {1}{2} \int _1^x\frac {K[5]+\log (K[5])+2}{K[5]^2+\log (K[5]) K[5]}dK[5]\right )}{2 \sqrt {x}}-\frac {\sqrt {x} (x+\log (x)+2) \exp \left (-\frac {1}{2} \int _1^x\frac {K[5]+\log (K[5])+2}{K[5]^2+\log (K[5]) K[5]}dK[5]\right )}{2 \left (x^2+x \log (x)\right )}\right )-\frac {\sqrt {x} (x+\log (x)+2) \log (x) \exp \left (-\frac {1}{2} \int _1^x\frac {K[5]+\log (K[5])+2}{K[5]^2+\log (K[5]) K[5]}dK[5]\right )}{2 \left (x^2+x \log (x)\right )}+\frac {\log (x) \exp \left (-\frac {1}{2} \int _1^x\frac {K[5]+\log (K[5])+2}{K[5]^2+\log (K[5]) K[5]}dK[5]\right )}{2 \sqrt {x}}+\frac {\exp \left (-\frac {1}{2} \int _1^x\frac {K[5]+\log (K[5])+2}{K[5]^2+\log (K[5]) K[5]}dK[5]\right )}{\sqrt {x}}\right )}{c_1 \sqrt {x} \exp \left (-\frac {1}{2} \int _1^x\frac {K[5]+\log (K[5])+2}{K[5]^2+\log (K[5]) K[5]}dK[5]\right )+\sqrt {x} \log (x) \exp \left (-\frac {1}{2} \int _1^x\frac {K[5]+\log (K[5])+2}{K[5]^2+\log (K[5]) K[5]}dK[5]\right )}\right \}\right \}\] ✓ Maple : cpu = 0.107 (sec), leaf count = 19
\[ \left \{ y \left ( x \right ) ={\frac {x \left ( {\it \_C1}\,x-1 \right ) }{{\it \_C1}\,\ln \left ( x \right ) +1}} \right \} \]