\[ -(x+1) (a+b) y'(x)+a b x y(x)+x y''(x)=0 \] ✓ Mathematica : cpu = 0.0621021 (sec), leaf count = 107
\[\left \{\left \{y(x)\to c_1 U\left (-\frac {-a^2-b a-a+b}{a-b},a+b+2,(a-b) x\right ) e^{(a+b+1) \log (x)+b x}+c_2 L_{\frac {-a^2-b a-a+b}{a-b}}^{a+b+1}((a-b) x) e^{(a+b+1) \log (x)+b x}\right \}\right \}\] ✓ Maple : cpu = 0.082 (sec), leaf count = 82
\[ \left \{ y \left ( x \right ) ={{\rm e}^{bx}}{x}^{a+b+1} \left ( {{\sl U}\left ({\frac {{a}^{2}+ab+a-b}{a-b}},\,a+b+2,\,x \left ( a-b \right ) \right )}{\it \_C2}+{{\sl M}\left ({\frac {{a}^{2}+ab+a-b}{a-b}},\,a+b+2,\,x \left ( a-b \right ) \right )}{\it \_C1} \right ) \right \} \]