\[ x y'(x)-y(x) f\left (x^a y(x)^b\right )=0 \] ✓ Mathematica : cpu = 0.238335 (sec), leaf count = 186
\[\text {Solve}\left [\int _1^{y(x)}\left (-\frac {b}{\left (a+b f\left (x^a K[2]^b\right )\right ) K[2]}-\int _1^x\left (\frac {b^2 K[1]^{a-1} K[2]^{b-1} f'\left (K[1]^a K[2]^b\right )}{a+b f\left (K[1]^a K[2]^b\right )}-\frac {b^3 f\left (K[1]^a K[2]^b\right ) K[1]^{a-1} K[2]^{b-1} f'\left (K[1]^a K[2]^b\right )}{\left (a+b f\left (K[1]^a K[2]^b\right )\right )^2}\right )dK[1]\right )dK[2]+\int _1^x\frac {b f\left (K[1]^a y(x)^b\right )}{\left (a+b f\left (K[1]^a y(x)^b\right )\right ) K[1]}dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.086 (sec), leaf count = 39
\[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{\frac {1}{ \left ( f \left ( {x}^{a}{{\it \_a}}^{b} \right ) b+a \right ) {\it \_a}}}\,{\rm d}{\it \_a}-{\frac {\ln \left ( x \right ) }{b}}-{\it \_C1}=0 \right \} \]