\[ y^{(3)}(x)-\sin (x) y''(x)-2 \cos (x) y'(x)+y(x) \sin (x)-\log (x)=0 \] ✓ Mathematica : cpu = 2.71327 (sec), leaf count = 64
\[\left \{\left \{y(x)\to e^{-\cos (x)} \int _1^x\frac {1}{4} e^{\cos (K[1])} \left (2 \log (K[1]) K[1]^2-3 K[1]^2+4 c_1 K[1]+4 c_2\right )dK[1]+c_3 e^{-\cos (x)}\right \}\right \}\] ✓ Maple : cpu = 0.062 (sec), leaf count = 36
\[ \left \{ y \left ( x \right ) = \left ( {\it \_C3}+\int \! \left ( 2\,{\it \_C1}\,x+{\it \_C2}-{\frac {3\,{x}^{2}}{4}}+{\frac {{x}^{2}\ln \left ( x \right ) }{2}} \right ) {{\rm e}^{\cos \left ( x \right ) }}\,{\rm d}x \right ) {{\rm e}^{-\cos \left ( x \right ) }} \right \} \]