\[ x^4 \left (-y'(x)^2\right )+4 x^2 y''(x)+4 y(x)=0 \] ✗ Mathematica : cpu = 7.12934 (sec), leaf count = 0 , could not solve
DSolve[4*y[x] - x^4*Derivative[1][y][x]^2 + 4*x^2*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.54 (sec), leaf count = 103
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\frac {{\it \_a}}{ \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right ) ^{2}}},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) = \left ( -{{\it \_a}}^{2}+7\,{\it \_a} \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{3}+ \left ( {\it \_a}-5 \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}-{\frac {{\it \_b} \left ( {\it \_a} \right ) }{4}} \right \} , \left \{ {\it \_a}={x}^{2}y \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) ={\frac {1}{{x}^{2} \left ( x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +2\,y \left ( x \right ) \right ) }} \right \} , \left \{ x={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},y \left ( x \right ) ={\frac {{\it \_a}}{ \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right ) ^{2}}} \right \} ] \right ) \right \} \]