\[ \left (x^2+y(x)^2\right ) y''(x)-2 \left (x y'(x)-y(x)\right ) \left (y'(x)^2+1\right )=0 \] ✓ Mathematica : cpu = 0.315481 (sec), leaf count = 95
\[\left \{\left \{y(x)\to \frac {1}{2} \left (-\sqrt {4 x \left (e^{c_2}-x\right )+e^{2 c_2} \cot ^2(c_1)}-e^{c_2} \cot (c_1)\right )\right \},\left \{y(x)\to \frac {1}{2} \left (\sqrt {4 x \left (e^{c_2}-x\right )+e^{2 c_2} \cot ^2(c_1)}-e^{c_2} \cot (c_1)\right )\right \}\right \}\] ✓ Maple : cpu = 0.279 (sec), leaf count = 83
\[ \left \{ y \left ( x \right ) ={\frac {1}{2\,{\it \_C2}} \left ( {\it \_C1}+1-\sqrt {{{\it \_C1}}^{2}+ \left ( 4\,i{\it \_C2}\,x+2 \right ) {\it \_C1}-4\,{{\it \_C2}}^{2}{x}^{2}-4\,i{\it \_C2}\,x+1} \right ) },y \left ( x \right ) ={\frac {1}{2\,{\it \_C2}} \left ( {\it \_C1}+1+\sqrt {{{\it \_C1}}^{2}+ \left ( 4\,i{\it \_C2}\,x+2 \right ) {\it \_C1}-4\,{{\it \_C2}}^{2}{x}^{2}-4\,i{\it \_C2}\,x+1} \right ) } \right \} \]