\[ a y(x) y'(x)+b y(x)^2+f(x)=0 \] ✓ Mathematica : cpu = 0.157378 (sec), leaf count = 98
\[\left \{\left \{y(x)\to -e^{-\frac {b x}{a}} \sqrt {2 \int _1^x-\frac {e^{\frac {2 b K[1]}{a}} f(K[1])}{a}dK[1]+c_1}\right \},\left \{y(x)\to e^{-\frac {b x}{a}} \sqrt {2 \int _1^x-\frac {e^{\frac {2 b K[1]}{a}} f(K[1])}{a}dK[1]+c_1}\right \}\right \}\] ✓ Maple : cpu = 0.031 (sec), leaf count = 100
\[ \left \{ y \left ( x \right ) ={\frac {1}{a}\sqrt {{{\rm e}^{2\,{\frac {bx}{a}}}}a \left ( {\it \_C1}\,a-2\,\int \! \left ( {{\rm e}^{{\frac {bx}{a}}}} \right ) ^{2}f \left ( x \right ) \,{\rm d}x \right ) } \left ( {{\rm e}^{2\,{\frac {bx}{a}}}} \right ) ^{-1}},y \left ( x \right ) =-{\frac {1}{a}\sqrt {{{\rm e}^{2\,{\frac {bx}{a}}}}a \left ( {\it \_C1}\,a-2\,\int \! \left ( {{\rm e}^{{\frac {bx}{a}}}} \right ) ^{2}f \left ( x \right ) \,{\rm d}x \right ) } \left ( {{\rm e}^{2\,{\frac {bx}{a}}}} \right ) ^{-1}} \right \} \]