\[ y'(x)=\frac {y(x)}{\log (\log (y(x)))-\log (x)+1} \] ✗ Mathematica : cpu = 2.37359 (sec), leaf count = 0 , could not solve
DSolve[Derivative[1][y][x] == y[x]/(1 - Log[x] + Log[Log[y[x]]]), y[x], x]
✓ Maple : cpu = 0.27 (sec), leaf count = 47
\[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{\frac {-\ln \left ( \ln \left ( {\it \_a} \right ) \right ) +\ln \left ( x \right ) -1}{ \left ( \ln \left ( {\it \_a} \right ) \ln \left ( x \right ) -\ln \left ( {\it \_a} \right ) \ln \left ( \ln \left ( {\it \_a} \right ) \right ) +x-\ln \left ( {\it \_a} \right ) \right ) {\it \_a}}}\,{\rm d}{\it \_a}-{\it \_C1}=0 \right \} \]