\[ y'(x)=\frac {2 x^3+4 x^2 y(x)+2 x y(x)^2+2 x+e^{\frac {1}{x}}-\log (x)}{\log (x)-e^{\frac {1}{x}}} \] ✓ Mathematica : cpu = 1.18221 (sec), leaf count = 38
\[\left \{\left \{y(x)\to \tan \left (\int _1^x-\frac {2 K[5]}{e^{\frac {1}{K[5]}}-\log (K[5])}dK[5]+c_1\right )-x\right \}\right \}\] ✓ Maple : cpu = 1.887 (sec), leaf count = 31
\[ \left \{ y \left ( x \right ) =-x+\tan \left ( 2\,{\it \_C1}-2\,\int \!-{\frac {x}{\ln \left ( x \right ) -{{\rm e}^{{x}^{-1}}}}}\,{\rm d}x \right ) \right \} \]