\[ y'(x)=-\frac {y(x) \cot (x) \left (x^2 y(x) (-\log (2 x))+x \log (2 x)+\tan (x)\right )}{x} \] ✓ Mathematica : cpu = 2.91138 (sec), leaf count = 88
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x\frac {-\cot (K[1]) K[1] \log (2 K[1])-1}{K[1]}dK[1]\right )}{c_1-\int _1^x\exp \left (\int _1^{K[2]}\frac {-\cot (K[1]) K[1] \log (2 K[1])-1}{K[1]}dK[1]\right ) \cot (K[2]) K[2] \log (2 K[2])dK[2]}\right \}\right \}\] ✓ Maple : cpu = 0.283 (sec), leaf count = 75
\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!{\frac {-x\ln \left ( x \right ) -x\ln \left ( 2 \right ) -\tan \left ( x \right ) }{x\tan \left ( x \right ) }}\,{\rm d}x}} \left ( \int \!-{\frac {x \left ( \ln \left ( 2 \right ) +\ln \left ( x \right ) \right ) }{\tan \left ( x \right ) }{{\rm e}^{\int \!{\frac {-x\ln \left ( x \right ) -x\ln \left ( 2 \right ) -\tan \left ( x \right ) }{x\tan \left ( x \right ) }}\,{\rm d}x}}}\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]