\[ y'(x)=\frac {x (x-y(x))^2 (y(x)+x)^2}{y(x)} \] ✓ Mathematica : cpu = 0.153221 (sec), leaf count = 126
\[\left \{\left \{y(x)\to -\frac {\sqrt {x^2 e^{4 c_1+2 x^2}-e^{4 c_1+2 x^2}+x^2+1}}{\sqrt {e^{4 c_1+2 x^2}+1}}\right \},\left \{y(x)\to \frac {\sqrt {x^2 e^{4 c_1+2 x^2}-e^{4 c_1+2 x^2}+x^2+1}}{\sqrt {e^{4 c_1+2 x^2}+1}}\right \}\right \}\] ✓ Maple : cpu = 0.095 (sec), leaf count = 192
\[ \left \{ y \left ( x \right ) ={1\sqrt { \left ( \left ( {x}^{2}+1 \right ) {{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}}+{\it \_C1}\, \left ( {x}^{2}-1 \right ) {{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}} \right ) \left ( {\it \_C1}\,{{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}}+{{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}} \right ) } \left ( {\it \_C1}\,{{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}}+{{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}} \right ) ^{-1}},y \left ( x \right ) =-{1\sqrt { \left ( \left ( {x}^{2}+1 \right ) {{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}}+{\it \_C1}\, \left ( {x}^{2}-1 \right ) {{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}} \right ) \left ( {\it \_C1}\,{{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}}+{{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}} \right ) } \left ( {\it \_C1}\,{{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}}+{{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}} \right ) ^{-1}} \right \} \]