\[ y'(x)=-y(x) \left (-\text {$\_$F1}(x)-\frac {\log (y(x))}{x}+\frac {\log (y(x))}{x \log (x)}\right ) \] ✓ Mathematica : cpu = 0.231542 (sec), leaf count = 92
\[\text {Solve}\left [\int _1^x\left (\frac {\log (y(x))-\log (K[1]) \log (y(x))}{K[1]^2}-\frac {\log (K[1]) \text {$\_$F1}(K[1])}{K[1]}\right )dK[1]+\int _1^{y(x)}\left (\frac {\log (x)}{x K[2]}-\int _1^x\frac {\frac {1}{K[2]}-\frac {\log (K[1])}{K[2]}}{K[1]^2}dK[1]\right )dK[2]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.1 (sec), leaf count = 30
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\frac {{\it \_C1}\,x}{\ln \left ( x \right ) }}}}{{\rm e}^{{\frac {x}{\ln \left ( x \right ) }\int \!{\frac {{\it \_F1} \left ( x \right ) \ln \left ( x \right ) }{x}}\,{\rm d}x}}} \right \} \]