\[ y'(x)=-\frac {y(x) \left (-\text {$\_$F1}(x)-\frac {\log ^2(y(x))}{2 x}\right )}{\log (y(x))} \] ✓ Mathematica : cpu = 0.235722 (sec), leaf count = 80
\[\text {Solve}\left [\int _1^x\left (-\frac {\log ^2(y(x))}{2 K[1]^2}-\frac {\text {$\_$F1}(K[1])}{K[1]}\right )dK[1]+\int _1^{y(x)}\left (\frac {\log (K[2])}{x K[2]}-\int _1^x-\frac {\log (K[2])}{K[1]^2 K[2]}dK[1]\right )dK[2]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.107 (sec), leaf count = 46
\[ \left \{ y \left ( x \right ) ={{\rm e}^{\sqrt {2\,\int \!{\frac {{\it \_F1} \left ( x \right ) }{x}}\,{\rm d}xx+2\,{\it \_C1}\,x}}},y \left ( x \right ) ={{\rm e}^{-\sqrt {2}\sqrt {x \left ( \int \!{\frac {{\it \_F1} \left ( x \right ) }{x}}\,{\rm d}x+{\it \_C1} \right ) }}} \right \} \]