\[ y'(x)=\frac {e^{-2 x} (x-1) y(x) \left (x^2 y(x)^2+e^x x y(x)+e^{2 x}\right )}{x} \] ✓ Mathematica : cpu = 5.84137 (sec), leaf count = 428
\[\text {Solve}\left [\frac {\sqrt [3]{2} \left (\frac {3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)}{\sqrt [3]{2} \sqrt [3]{e^{-3 x} (x-1)^3}}+2^{2/3}\right ) \left (2^{2/3}-\frac {2^{2/3} \left (3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)\right )}{\sqrt [3]{e^{-3 x} (x-1)^3}}\right ) \left (\left (1-\frac {3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)}{\sqrt [3]{e^{-3 x} (x-1)^3}}\right ) \log \left (2^{2/3}-\frac {2^{2/3} \left (3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)\right )}{\sqrt [3]{e^{-3 x} (x-1)^3}}\right )+\left (\frac {3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)}{\sqrt [3]{e^{-3 x} (x-1)^3}}-1\right ) \log \left (2 \left (\frac {3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)}{\sqrt [3]{2} \sqrt [3]{e^{-3 x} (x-1)^3}}+2^{2/3}\right )\right )-3\right )}{9 \left (-\frac {e^{3 x} \left (3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)\right )^3}{(x-1)^3}+\frac {3 \left (3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)\right )}{\sqrt [3]{e^{-3 x} (x-1)^3}}-2\right )}=c_1+\frac {2^{2/3} e^{-x} (x-1) (x-\log (x))}{9 \sqrt [3]{e^{-3 x} (x-1)^3}},y(x)\right ]\] ✓ Maple : cpu = 0.22 (sec), leaf count = 40
\[ \left \{ y \left ( x \right ) ={\frac {1}{9\,x}{{\rm e}^{{\it RootOf} \left ( -{{\rm e}^{{\it \_Z}}}\ln \left ( {\frac {x \left ( {{\rm e}^{{\it \_Z}}}+9 \right ) }{2}} \right ) +3\,{\it \_C1}\,{{\rm e}^{{\it \_Z}}}+{\it \_Z}\,{{\rm e}^{{\it \_Z}}}+{{\rm e}^{{\it \_Z}}}x+9 \right ) +x}}} \right \} \]