2.231   ODE No. 231

y(x)(ay(x)+bx+c)+αy(x)+βx+γ=0

Mathematica : cpu = 1.59365 (sec), leaf count = 252

DSolve[EulerGamma + beta*x + alpha*y[x] + (c + b*x + a*y[x])*Derivative[1][y][x] == 0,y[x],x]
 
Solve[(αb)2(log((ay(x)+bx+c)2((α(bx+c)a(βx+γ))(a(αb)y(x)+a(βx+γ)+b2(x)bc)(ay(x)+bx+c)2+aβαb)(α(bx+c)a(βx+γ))2)2tan1(2a(βx+γ)2α(bx+c)ay(x)+bx+c+αb(αb)4(aβαb)(αb)21)4(aβαb)(αb)21)2(aβαb)=(αb)2log(a(βx+γ)α(bx+c))aβαb+c1,y(x)]

Maple : cpu = 0.319 (sec), leaf count = 178

dsolve((a*y(x)+b*x+c)*diff(y(x),x)+alpha*y(x)+beta*x+gamma = 0,y(x))
 
y(x)=bγ+βc+(x(aβbα)+aγαc)(4aβα22bαb2tan(RootOf(4aβα22bαb2ln((aβxαbx+aγαc)2(tan(_Z)2+1)(4aβα22bαb2)4a)+2c14aβα22bαb2+2_Zα2_Zb))+α+b)2aaβ+bα