2.682 ODE No. 682
\[ y'(x)=\frac {2 a}{x \left (-8 a^2+2 a x y(x)^2-x y(x)\right )} \]
✓ Mathematica : cpu = 0.249234 (sec), leaf count = 39
DSolve[Derivative[1][y][x] == (2*a)/(x*(-8*a^2 - x*y[x] + 2*a*x*y[x]^2)),y[x],x]
\[\text {Solve}\left [\frac {y(x)^2 e^{-4 a y(x)}}{8 a}-\frac {e^{-4 a y(x)}}{2 x}=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.15 (sec), leaf count = 28
dsolve(diff(y(x),x) = 2*a/x/(-x*y(x)+2*a*x*y(x)^2-8*a^2),y(x))
\[c_{1} +\frac {\left (-x y \left (x \right )^{2}+4 a \right ) {\mathrm e}^{-4 a y \left (x \right )}}{x} = 0\]