\[ y(x) (a x+b)+x^2 y''(x)+x^2 y'(x)=0 \] ✓ Mathematica : cpu = 0.0315576 (sec), leaf count = 122
\[\left \{\left \{y(x)\to c_1 e^{\frac {1}{2} \left (\left (\sqrt {1-4 b}+1\right ) \log (x)-2 x\right )} U\left (\frac {1}{2} \left (-2 a+\sqrt {1-4 b}+1\right ),\sqrt {1-4 b}+1,x\right )+c_2 e^{\frac {1}{2} \left (\left (\sqrt {1-4 b}+1\right ) \log (x)-2 x\right )} L_{\frac {1}{2} \left (2 a-\sqrt {1-4 b}-1\right )}^{\sqrt {1-4 b}}(x)\right \}\right \}\]
✓ Maple : cpu = 0.089 (sec), leaf count = 41
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-{\frac {x}{2}}}}{{\sl M}_{a,\,{\frac {1}{2}\sqrt {1-4\,b}}}\left (x\right )}+{\it \_C2}\,{{\rm e}^{-{\frac {x}{2}}}}{{\sl W}_{a,\,{\frac {1}{2}\sqrt {1-4\,b}}}\left (x\right )} \right \} \]