\[ x^2 y''(x)+(x+3) x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.0285827 (sec), leaf count = 80
\[\left \{\left \{y(x)\to c_1 U\left (2+\sqrt {2},1+2 \sqrt {2},x\right ) e^{\left (\sqrt {2}-1\right ) \log (x)-x}+c_2 L_{-2-\sqrt {2}}^{2 \sqrt {2}}(x) e^{\left (\sqrt {2}-1\right ) \log (x)-x}\right \}\right \}\]
✓ Maple : cpu = 0.115 (sec), leaf count = 94
\[ \left \{ y \left ( x \right ) ={{\it \_C1} \left ( \left ( \sqrt {2}+x+1 \right ) {{\sl I}_{-{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )}+{{\sl I}_{{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )} \left ( x-\sqrt {2}+1 \right ) \right ) {{\rm e}^{-{\frac {x}{2}}}}{\frac {1}{\sqrt {x}}}}+{{\it \_C2}{{\rm e}^{-{\frac {x}{2}}}} \left ( \left ( \sqrt {2}+x+1 \right ) {{\sl K}_{-{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )}-{{\sl K}_{{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )} \left ( x-\sqrt {2}+1 \right ) \right ) {\frac {1}{\sqrt {x}}}} \right \} \]