\[ x (-(v-n)) (n+v+1) y(x)+\left (2 (n+1) x^2+2 n+1\right ) y'(x)+x \left (x^2+1\right ) y''(x)=0 \] ✓ Mathematica : cpu = 0.20645 (sec), leaf count = 87
\[\left \{\left \{y(x)\to c_1 \, _2F_1\left (\frac {n}{2}-\frac {v}{2},\frac {n}{2}+\frac {v}{2}+\frac {1}{2};n+1;-x^2\right )+c_2 x^{-2 n} \, _2F_1\left (-\frac {n}{2}-\frac {v}{2},-\frac {n}{2}+\frac {v}{2}+\frac {1}{2};1-n;-x^2\right )\right \}\right \}\]
✓ Maple : cpu = 0.092 (sec), leaf count = 39
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{x}^{-n}{\it LegendreP} \left ( v,n,\sqrt {{x}^{2}+1} \right ) +{\it \_C2}\,{x}^{-n}{\it LegendreQ} \left ( v,n,\sqrt {{x}^{2}+1} \right ) \right \} \]