\[ y''(x)=\frac {2 (x+1) y(x)}{(x-1) x}-\frac {2 (x-2) y'(x)}{(x-1) x} \] ✗ Mathematica : cpu = 0.794788 (sec), leaf count = 0 , DifferentialRoot result
\[\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(-2 \unicode {f817}-2) \unicode {f818}(\unicode {f817})+(2 \unicode {f817}-4) \unicode {f818}'(\unicode {f817})+(\unicode {f817}-1) \unicode {f817} \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(2)=c_1,\unicode {f818}'(2)=c_2\right \}\right )(x)\right \}\right \}\]
✓ Maple : cpu = 0.022 (sec), leaf count = 20
\[ \left \{ y \left ( x \right ) ={\frac {{\it \_C1}}{{x}^{2}}}+{\frac {{\it \_C2}\, \left ( x-1 \right ) ^{3}}{{x}^{2}}} \right \} \]