\[ y''(x)=\frac {y'(x) \left (2 (a-1) x^2-2 a+2 b c \left (x^2-1\right ) x^c\right )}{x \left (x^2-1\right )}-\frac {y(x) \left (b c (2 a-c-1) x^{c+2}-b c (2 a-c+1) x^c+x^2 ((a-1) a-v (v+1))-a (a+1)+b^2 c^2 \left (x^2-1\right ) x^{2 c}\right )}{x^2 \left (x^2-1\right )} \] ✓ Mathematica : cpu = 0.19279 (sec), leaf count = 42
\[\left \{\left \{y(x)\to c_1 P_v(x) e^{a \log (x)+b x^c}+c_2 Q_v(x) e^{a \log (x)+b x^c}\right \}\right \}\]
✓ Maple : cpu = 0.11 (sec), leaf count = 33
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{x}^{a}{{\rm e}^{b{x}^{c}}}{\it LegendreP} \left ( v,x \right ) +{\it \_C2}\,{x}^{a}{{\rm e}^{b{x}^{c}}}{\it LegendreQ} \left ( v,x \right ) \right \} \]