\[ a x y(x)-b+2 x y^{(3)}(x)+3 y''(x)=0 \] ✗ Mathematica : cpu = 3599.95 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.324 (sec), leaf count = 2294
\[ \left \{ y \left ( x \right ) =-\int \!350350\,{bx \left ( 5\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}a-8\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}a-70\,{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} \right ) \left ( 2800\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}-7840\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}-2200\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}+10192\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}-78400\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}-6370\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}+3850\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}+200200\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+560560\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}-700700\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+89180\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+19250\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+16816800\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}a-7357350\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}a-7882875\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}a+24524500\,{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} \right ) ^{-1}}\,{\rm d}x{\mbox {$_0$F$_2$}(\ ;\,{\frac {2}{3}},{\frac {5}{6}};\,-{\frac {a{x}^{3}}{54}})}-\int \!700700\,{b \left ( 4\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}a-7\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}a-35\,{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} \right ) \left ( 2800\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}-7840\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}-2200\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}+10192\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}-78400\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}-6370\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}+3850\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}+200200\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+560560\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}-700700\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+89180\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+19250\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+16816800\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}a-7357350\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}a-7882875\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}a+24524500\,{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} \right ) ^{-1}}\,{\rm d}x{\mbox {$_0$F$_2$}(\ ;\,{\frac {7}{6}},{\frac {4}{3}};\,-{\frac {a{x}^{3}}{54}})}x-\int \!-350350\,{b\sqrt {x} \left ( 5\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}a{x}^{3}-14\,{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}a-140\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} \right ) \left ( 2800\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}-7840\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}-2200\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}+10192\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}-78400\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}-6370\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}+3850\,{x}^{9}{\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{3}+200200\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+560560\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}-700700\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+89180\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+19250\,{x}^{6}{\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{a}^{2}+16816800\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}a-7357350\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}a-7882875\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}a+24524500\,{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})}{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} \right ) ^{-1}}\,{\rm d}x\sqrt {x}{\mbox {$_0$F$_2$}(\ ;\,{\frac {5}{6}},{\frac {7}{6}};\,-{\frac {a{x}^{3}}{54}})}+{\it \_C1}\,{\mbox {$_0$F$_2$}(\ ;\,{\frac {2}{3}},{\frac {5}{6}};\,-{\frac {a{x}^{3}}{54}})}+{\it \_C2}\,{\mbox {$_0$F$_2$}(\ ;\,{\frac {7}{6}},{\frac {4}{3}};\,-{\frac {a{x}^{3}}{54}})}x+{\it \_C3}\,\sqrt {x}{\mbox {$_0$F$_2$}(\ ;\,{\frac {5}{6}},{\frac {7}{6}};\,-{\frac {a{x}^{3}}{54}})} \right \} \]