\[ a \left (x y'(x)-y(x)\right )^2-b x^2+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 53.1882 (sec), leaf count = 133
\[\left \{\left \{y(x)\to x \left (c_2+\int _1^x \frac {i \sqrt {a} \sqrt {b} Y_1\left (-i \sqrt {a} \sqrt {b} K[2]\right )-i \sqrt {a} \sqrt {b} c_1 J_1\left (i \sqrt {a} \sqrt {b} K[2]\right )}{a K[2] \left (c_1 J_0\left (i \sqrt {a} \sqrt {b} K[2]\right )+Y_0\left (-i \sqrt {a} \sqrt {b} K[2]\right )\right )} \, dK[2]\right )\right \}\right \}\]
✓ Maple : cpu = 0.272 (sec), leaf count = 110
\[ \left \{ y \left ( x \right ) = \left ( \int \!-{\frac {{\it \_C1}}{ax}{{\sl Y}_{1}\left (\sqrt {-ab}x\right )}\sqrt {-ab} \left ( {\it \_C1}\,{{\sl Y}_{0}\left (\sqrt {-ab}x\right )}+{{\sl J}_{0}\left (\sqrt {-ab}x\right )} \right ) ^{-1}}-{\frac {1}{ax}{{\sl J}_{1}\left (\sqrt {-ab}x\right )}\sqrt {-ab} \left ( {\it \_C1}\,{{\sl Y}_{0}\left (\sqrt {-ab}x\right )}+{{\sl J}_{0}\left (\sqrt {-ab}x\right )} \right ) ^{-1}}\,{\rm d}x+{\it \_C2} \right ) x \right \} \]