\[ x y(x) y''(x)-4 x y'(x)^2+4 y(x) y'(x)=0 \] ✓ Mathematica : cpu = 0.0456618 (sec), leaf count = 21
\[\left \{\left \{y(x)\to \frac {c_2 x}{\sqrt [3]{c_1 x^3+1}}\right \}\right \}\]
✓ Maple : cpu = 0.032 (sec), leaf count = 84
\[ \left \{ y \left ( x \right ) = \left ( -{\frac {1}{2}{\frac {1}{\sqrt [3]{-3\,{\it \_C2}\,{x}^{3}+{\it \_C1}}}}}-{{\frac {i}{2}}\sqrt {3}{\frac {1}{\sqrt [3]{-3\,{\it \_C2}\,{x}^{3}+{\it \_C1}}}}} \right ) x,y \left ( x \right ) = \left ( -{\frac {1}{2}{\frac {1}{\sqrt [3]{-3\,{\it \_C2}\,{x}^{3}+{\it \_C1}}}}}+{{\frac {i}{2}}\sqrt {3}{\frac {1}{\sqrt [3]{-3\,{\it \_C2}\,{x}^{3}+{\it \_C1}}}}} \right ) x,y \left ( x \right ) ={x{\frac {1}{\sqrt [3]{-3\,{\it \_C2}\,{x}^{3}+{\it \_C1}}}}} \right \} \]