\[ \text {f0}(x) y(x) y''(x)+\text {f1}(x) y'(x)^2+\text {f2}(x) y(x) y'(x)+\text {f3}(x) y(x)^2=0 \] ✗ Mathematica : cpu = 49.0159 (sec), leaf count = 0 , could not solve
DSolve[f3[x]*y[x]^2 + f2[x]*y[x]*Derivative[1][y][x] + f1[x]*Derivative[1][y][x]^2 + f0[x]*y[x]*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.768 (sec), leaf count = 83
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) =-{\frac { \left ( {\it f1} \left ( {\it \_a} \right ) +{\it f0} \left ( {\it \_a} \right ) \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}}{{\it f0} \left ( {\it \_a} \right ) }}-{\frac {{\it f2} \left ( {\it \_a} \right ) {\it \_b} \left ( {\it \_a} \right ) }{{\it f0} \left ( {\it \_a} \right ) }}-{\frac {{\it f3} \left ( {\it \_a} \right ) }{{\it f0} \left ( {\it \_a} \right ) }} \right \} , \left \{ {\it \_a}=x,{\it \_b} \left ( {\it \_a} \right ) ={\frac {{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) }{y \left ( x \right ) }} \right \} , \left \{ x={\it \_a},y \left ( x \right ) ={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right \} ] \right ) \right \} \]