\[ \left (x^2+y(x)^2\right ) y''(x)-2 \left (x y'(x)-y(x)\right ) \left (y'(x)^2+1\right )=0 \] ✓ Mathematica : cpu = 0.372858 (sec), leaf count = 95
\[\left \{\left \{y(x)\to \frac {1}{2} \left (-\sqrt {4 x \left (e^{c_2}-x\right )+e^{2 c_2} \cot ^2\left (c_1\right )}-e^{c_2} \cot \left (c_1\right )\right )\right \},\left \{y(x)\to \frac {1}{2} \left (\sqrt {4 x \left (e^{c_2}-x\right )+e^{2 c_2} \cot ^2\left (c_1\right )}-e^{c_2} \cot \left (c_1\right )\right )\right \}\right \}\]
✓ Maple : cpu = 0.355 (sec), leaf count = 83
\[ \left \{ y \left ( x \right ) ={\frac {1}{2\,{\it \_C2}} \left ( {\it \_C1}+1-\sqrt {4\,i{\it \_C1}\,{\it \_C2}\,x+{{\it \_C1}}^{2}-4\,{{\it \_C2}}^{2}{x}^{2}-4\,i{\it \_C2}\,x+2\,{\it \_C1}+1} \right ) },y \left ( x \right ) ={\frac {1}{2\,{\it \_C2}} \left ( {\it \_C1}+1+\sqrt {4\,i{\it \_C1}\,{\it \_C2}\,x+{{\it \_C1}}^{2}-4\,{{\it \_C2}}^{2}{x}^{2}-4\,i{\it \_C2}\,x+2\,{\it \_C1}+1} \right ) } \right \} \]