\[ \left \{x'(t)=6 x(t)-72 y(t)+44 z(t),y'(t)=4 x(t)-4 y(t)+26 z(t),z'(t)=6 x(t)-63 y(t)+38 z(t)\right \} \] ✓ Mathematica : cpu = 0.0675137 (sec), leaf count = 551
\[\left \{\left \{x(t)\to -36 c_2 \text {RootSum}\left [\text {$\#$1}^3-40 \text {$\#$1}^2+1714 \text {$\#$1}+1404\& ,\frac {2 \text {$\#$1} e^{\text {$\#$1} t}+e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-80 \text {$\#$1}+1714}\& \right ]+4 c_3 \text {RootSum}\left [\text {$\#$1}^3-40 \text {$\#$1}^2+1714 \text {$\#$1}+1404\& ,\frac {11 \text {$\#$1} e^{\text {$\#$1} t}-424 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-80 \text {$\#$1}+1714}\& \right ]+c_1 \text {RootSum}\left [\text {$\#$1}^3-40 \text {$\#$1}^2+1714 \text {$\#$1}+1404\& ,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-34 \text {$\#$1} e^{\text {$\#$1} t}+1486 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-80 \text {$\#$1}+1714}\& \right ],y(t)\to 4 c_1 \text {RootSum}\left [\text {$\#$1}^3-40 \text {$\#$1}^2+1714 \text {$\#$1}+1404\& ,\frac {\text {$\#$1} e^{\text {$\#$1} t}+e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-80 \text {$\#$1}+1714}\& \right ]+2 c_3 \text {RootSum}\left [\text {$\#$1}^3-40 \text {$\#$1}^2+1714 \text {$\#$1}+1404\& ,\frac {13 \text {$\#$1} e^{\text {$\#$1} t}+10 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-80 \text {$\#$1}+1714}\& \right ]+c_2 \text {RootSum}\left [\text {$\#$1}^3-40 \text {$\#$1}^2+1714 \text {$\#$1}+1404\& ,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-44 \text {$\#$1} e^{\text {$\#$1} t}-36 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-80 \text {$\#$1}+1714}\& \right ],z(t)\to 6 c_1 \text {RootSum}\left [\text {$\#$1}^3-40 \text {$\#$1}^2+1714 \text {$\#$1}+1404\& ,\frac {\text {$\#$1} e^{\text {$\#$1} t}-38 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-80 \text {$\#$1}+1714}\& \right ]-9 c_2 \text {RootSum}\left [\text {$\#$1}^3-40 \text {$\#$1}^2+1714 \text {$\#$1}+1404\& ,\frac {7 \text {$\#$1} e^{\text {$\#$1} t}+6 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-80 \text {$\#$1}+1714}\& \right ]+c_3 \text {RootSum}\left [\text {$\#$1}^3-40 \text {$\#$1}^2+1714 \text {$\#$1}+1404\& ,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-2 \text {$\#$1} e^{\text {$\#$1} t}+264 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-80 \text {$\#$1}+1714}\& \right ]\right \}\right \}\]
✓ Maple : cpu = 0.75 (sec), leaf count = 3231
\[ \left \{ \left \{ x \left ( t \right ) ={\it \_C2}\,{{\rm e}^{{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}\sin \left ( {\frac {t\sqrt {3}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542\,\sqrt {3}t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +{\it \_C3}\,{{\rm e}^{{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}\cos \left ( {\frac {t\sqrt {3}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542\,\sqrt {3}t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +{\it \_C1}\,{{\rm e}^{-{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}-40\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{3\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}},y \left ( t \right ) =-{\frac { \left ( 99\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\sqrt {351406311}+1449107\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}-563112\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}-8242520616\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}+26522496\,\sqrt {351406311}\sqrt [3]{263474+18\,\sqrt {351406311}}+388221561728\,\sqrt [3]{263474+18\,\sqrt {351406311}}-2703755988\,\sqrt {351406311}-58061910038292 \right ) {\it \_C1}}{2504844\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+36664514892\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}}{{\rm e}^{-{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}-40\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{3\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}}+ \left ( {\frac {{\it \_C3}}{5009688\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+73329029784\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}} \left ( 99\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\sqrt {351406311}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +1449107\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +1126224\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +594\,\sqrt [3]{4}\sqrt {117135437}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} \left ( 22909274180+1185633\,\sqrt {351406311} \right ) }+5845158\,\sqrt [3]{4}\sqrt {3}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} \left ( 22909274180+1185633\,\sqrt {351406311} \right ) }+16485041232\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +26522496\,\sqrt [3]{263474+18\,\sqrt {351406311}}\sqrt {351406311}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +388221561728\,\sqrt [3]{263474+18\,\sqrt {351406311}}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -2703755988\,\sqrt {351406311}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +5918679936\,\sqrt {117135437}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +10697961816468\,\sqrt {3}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +404352\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {41162131803542907}+730862676\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {1054218933}-58061910038292\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \right ) }+{\frac {{\it \_C2}}{5009688\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+73329029784\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}} \left ( 99\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +1449107\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +1126224\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -594\,\sqrt [3]{4}\sqrt {117135437}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} \left ( 22909274180+1185633\,\sqrt {351406311} \right ) }-5845158\,\sqrt [3]{4}\sqrt {3}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} \left ( 22909274180+1185633\,\sqrt {351406311} \right ) }+16485041232\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +26522496\,\sqrt [3]{263474+18\,\sqrt {351406311}}\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +388221561728\,\sqrt [3]{263474+18\,\sqrt {351406311}}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -2703755988\,\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -5918679936\,\sqrt {117135437}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -10697961816468\,\sqrt {3}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -404352\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {41162131803542907}-730862676\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {1054218933}-58061910038292\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \right ) } \right ) {{\rm e}^{{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}},z \left ( t \right ) =-{\frac { \left ( 9\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\sqrt {351406311}+131737\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}-74385\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}-1088806305\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}-1322937\,\sqrt {351406311}\sqrt [3]{263474+18\,\sqrt {351406311}}-19364416841\,\sqrt [3]{263474+18\,\sqrt {351406311}}+309726954\,\sqrt {351406311}+5455680825948 \right ) {\it \_C1}}{139158\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+2036917494\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}}{{\rm e}^{-{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}-40\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{3\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}}+ \left ( {\frac {{\it \_C3}}{278316\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+4073834988\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}} \left ( 9\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\sqrt {351406311}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +131737\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +148770\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +54\,\sqrt [3]{4}\sqrt {117135437}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} \left ( 22909274180+1185633\,\sqrt {351406311} \right ) }+116481\,\sqrt [3]{4}\sqrt {3}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} \left ( 22909274180+1185633\,\sqrt {351406311} \right ) }+2177612610\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -1322937\,\sqrt [3]{263474+18\,\sqrt {351406311}}\sqrt {351406311}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -19364416841\,\sqrt [3]{263474+18\,\sqrt {351406311}}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +309726954\,\sqrt {351406311}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -295222617\,\sqrt {117135437}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -3093176197095\,\sqrt {3}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -20169\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {41162131803542907}-211319415\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {1054218933}+5455680825948\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \right ) }+{\frac {{\it \_C2}}{278316\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+4073834988\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}} \left ( 9\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +131737\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +148770\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -54\,\sqrt [3]{4}\sqrt {117135437}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} \left ( 22909274180+1185633\,\sqrt {351406311} \right ) }-116481\,\sqrt [3]{4}\sqrt {3}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} \left ( 22909274180+1185633\,\sqrt {351406311} \right ) }+2177612610\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -1322937\,\sqrt [3]{263474+18\,\sqrt {351406311}}\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) -19364416841\,\sqrt [3]{263474+18\,\sqrt {351406311}}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +309726954\,\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +295222617\,\sqrt {117135437}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +3093176197095\,\sqrt {3}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +20169\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {41162131803542907}+211319415\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {1054218933}+5455680825948\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \right ) } \right ) {{\rm e}^{{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}+80\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}} \right \} \right \} \]