\[ 6 x y(x)^2 y'(x)+2 y(x)^3+x=0 \] ✓ Mathematica : cpu = 0.00951691 (sec), leaf count = 99
\[\left \{\left \{y(x)\to \frac {\sqrt [3]{4 c_1-x^2}}{2^{2/3} \sqrt [3]{x}}\right \},\left \{y(x)\to -\frac {\sqrt [3]{-1} \sqrt [3]{4 c_1-x^2}}{2^{2/3} \sqrt [3]{x}}\right \},\left \{y(x)\to \frac {(-1)^{2/3} \sqrt [3]{4 c_1-x^2}}{2^{2/3} \sqrt [3]{x}}\right \}\right \}\]
✓ Maple : cpu = 0.018 (sec), leaf count = 120
\[ \left \{ y \left ( x \right ) ={\frac {1}{2\,x}\sqrt [3]{ \left ( -2\,{x}^{2}+8\,{\it \_C1} \right ) {x}^{2}}},y \left ( x \right ) =-{\frac {1}{4\,x}\sqrt [3]{ \left ( -2\,{x}^{2}+8\,{\it \_C1} \right ) {x}^{2}}}-{\frac {{\frac {i}{4}}\sqrt {3}}{x}\sqrt [3]{ \left ( -2\,{x}^{2}+8\,{\it \_C1} \right ) {x}^{2}}},y \left ( x \right ) =-{\frac {1}{4\,x}\sqrt [3]{ \left ( -2\,{x}^{2}+8\,{\it \_C1} \right ) {x}^{2}}}+{\frac {{\frac {i}{4}}\sqrt {3}}{x}\sqrt [3]{ \left ( -2\,{x}^{2}+8\,{\it \_C1} \right ) {x}^{2}}} \right \} \]