\[ -2 \text {Global$\grave { }$x}^3+\left (2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^3+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})-\text {Global$\grave { }$x}=0 \] ✓ Mathematica : cpu = 0.0125929 (sec), leaf count = 151
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {\sqrt {-\sqrt {8 c_1+4 \text {Global$\grave { }$x}^4+4 \text {Global$\grave { }$x}^2+1}-1}}{\sqrt {2}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {\sqrt {-\sqrt {8 c_1+4 \text {Global$\grave { }$x}^4+4 \text {Global$\grave { }$x}^2+1}-1}}{\sqrt {2}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {\sqrt {\sqrt {8 c_1+4 \text {Global$\grave { }$x}^4+4 \text {Global$\grave { }$x}^2+1}-1}}{\sqrt {2}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {\sqrt {\sqrt {8 c_1+4 \text {Global$\grave { }$x}^4+4 \text {Global$\grave { }$x}^2+1}-1}}{\sqrt {2}}\right \}\right \}\]
✓ Maple : cpu = 0.04 (sec), leaf count = 113
\[ \left \{ y \left ( x \right ) =-{\frac {1}{2}\sqrt {-2-2\,\sqrt {4\,{x}^{4}+4\,{x}^{2}+8\,{\it \_C1}+1}}},y \left ( x \right ) ={\frac {1}{2}\sqrt {-2-2\,\sqrt {4\,{x}^{4}+4\,{x}^{2}+8\,{\it \_C1}+1}}},y \left ( x \right ) =-{\frac {1}{2}\sqrt {-2+2\,\sqrt {4\,{x}^{4}+4\,{x}^{2}+8\,{\it \_C1}+1}}},y \left ( x \right ) ={\frac {1}{2}\sqrt {-2+2\,\sqrt {4\,{x}^{4}+4\,{x}^{2}+8\,{\it \_C1}+1}}} \right \} \]