\[ \left (3 \text {Global$\grave { }$x} \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^3-4 \text {Global$\grave { }$x} \text {Global$\grave { }$y}(\text {Global$\grave { }$x})+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})+\left (\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2-2\right ) \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2=0 \] ✓ Mathematica : cpu = 0.147007 (sec), leaf count = 4284
\[\left \{\{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to 0\},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\sqrt {\frac {4 \sqrt [3]{2} \text {Global$\grave { }$x}^2}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {4 \sqrt [3]{2} \text {Global$\grave { }$x}}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {\sqrt [3]{2}}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {2}{3}-\frac {2}{3 \text {Global$\grave { }$x}}+\frac {\sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{3 \sqrt [3]{2} \text {Global$\grave { }$x}^2}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \sqrt {\frac {4 \sqrt [3]{2} \text {Global$\grave { }$x}^2}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {4 \sqrt [3]{2} \text {Global$\grave { }$x}}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {\sqrt [3]{2}}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {2}{3}-\frac {2}{3 \text {Global$\grave { }$x}}+\frac {\sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{3 \sqrt [3]{2} \text {Global$\grave { }$x}^2}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\sqrt {\frac {2 i \sqrt [3]{2} \text {Global$\grave { }$x}^2}{\sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 \sqrt [3]{2} \text {Global$\grave { }$x}^2}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {2 i \sqrt [3]{2} \text {Global$\grave { }$x}}{\sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 \sqrt [3]{2} \text {Global$\grave { }$x}}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {i}{2^{2/3} \sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {1}{3\ 2^{2/3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {2}{3}-\frac {2}{3 \text {Global$\grave { }$x}}-\frac {i \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{2 \sqrt [3]{2} \sqrt {3} \text {Global$\grave { }$x}^2}-\frac {\sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{6 \sqrt [3]{2} \text {Global$\grave { }$x}^2}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \sqrt {\frac {2 i \sqrt [3]{2} \text {Global$\grave { }$x}^2}{\sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 \sqrt [3]{2} \text {Global$\grave { }$x}^2}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {2 i \sqrt [3]{2} \text {Global$\grave { }$x}}{\sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 \sqrt [3]{2} \text {Global$\grave { }$x}}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {i}{2^{2/3} \sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {1}{3\ 2^{2/3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {2}{3}-\frac {2}{3 \text {Global$\grave { }$x}}-\frac {i \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{2 \sqrt [3]{2} \sqrt {3} \text {Global$\grave { }$x}^2}-\frac {\sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{6 \sqrt [3]{2} \text {Global$\grave { }$x}^2}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\sqrt {-\frac {2 i \sqrt [3]{2} \text {Global$\grave { }$x}^2}{\sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 \sqrt [3]{2} \text {Global$\grave { }$x}^2}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 i \sqrt [3]{2} \text {Global$\grave { }$x}}{\sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 \sqrt [3]{2} \text {Global$\grave { }$x}}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {i}{2^{2/3} \sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {1}{3\ 2^{2/3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {2}{3}-\frac {2}{3 \text {Global$\grave { }$x}}+\frac {i \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{2 \sqrt [3]{2} \sqrt {3} \text {Global$\grave { }$x}^2}-\frac {\sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{6 \sqrt [3]{2} \text {Global$\grave { }$x}^2}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \sqrt {-\frac {2 i \sqrt [3]{2} \text {Global$\grave { }$x}^2}{\sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 \sqrt [3]{2} \text {Global$\grave { }$x}^2}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 i \sqrt [3]{2} \text {Global$\grave { }$x}}{\sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {2 \sqrt [3]{2} \text {Global$\grave { }$x}}{3 \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {i}{2^{2/3} \sqrt {3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}-\frac {1}{3\ 2^{2/3} \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}+\frac {2}{3}-\frac {2}{3 \text {Global$\grave { }$x}}+\frac {i \sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{2 \sqrt [3]{2} \sqrt {3} \text {Global$\grave { }$x}^2}-\frac {\sqrt [3]{16 \text {Global$\grave { }$x}^6+24 \text {Global$\grave { }$x}^5-27 c_1^2 \text {Global$\grave { }$x}^4+12 \text {Global$\grave { }$x}^4+2 \text {Global$\grave { }$x}^3+3 \sqrt {3} \sqrt {-32 c_1^2 \text {Global$\grave { }$x}^{10}-48 c_1^2 \text {Global$\grave { }$x}^9+27 c_1^4 \text {Global$\grave { }$x}^8-24 c_1^2 \text {Global$\grave { }$x}^8-4 c_1^2 \text {Global$\grave { }$x}^7}}}{6 \sqrt [3]{2} \text {Global$\grave { }$x}^2}}\right \}\right \}\]
✓ Maple : cpu = 0.021 (sec), leaf count = 28
\[ \left \{ x+ \left ( y \left ( x \right ) \right ) ^{-2}-{\frac {{\it \_C1}}{ \left ( y \left ( x \right ) \right ) ^{2}}{\frac {1}{\sqrt { \left ( y \left ( x \right ) \right ) ^{2}-2}}}}=0,y \left ( x \right ) =0 \right \} \]