\[ \left (\text {Global$\grave { }$x}^2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^3+\text {Global$\grave { }$x} \text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})-1=0 \] ✓ Mathematica : cpu = 2.58867 (sec), leaf count = 76
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {\sqrt {2 \text {Global$\grave { }$x} W\left (c_1 e^{\frac {1}{2 \text {Global$\grave { }$x}}-1}\right )+2 \text {Global$\grave { }$x}-1}}{\sqrt {\text {Global$\grave { }$x}}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {\sqrt {2 \text {Global$\grave { }$x} W\left (c_1 e^{\frac {1}{2 \text {Global$\grave { }$x}}-1}\right )+2 \text {Global$\grave { }$x}-1}}{\sqrt {\text {Global$\grave { }$x}}}\right \}\right \}\]
✓ Maple : cpu = 0.19 (sec), leaf count = 70
\[ \left \{ y \left ( x \right ) ={\frac {1}{x}\sqrt {x \left ( 2\,{\it lambertW} \left ( 1/2\,{\it \_C1}\,{{\rm e}^{-1/2\,{\frac {2\,x-1}{x}}}} \right ) x+2\,x-1 \right ) }},y \left ( x \right ) =-{\frac {1}{x}\sqrt {x \left ( 2\,{\it lambertW} \left ( 1/2\,{\it \_C1}\,{{\rm e}^{-1/2\,{\frac {2\,x-1}{x}}}} \right ) x+2\,x-1 \right ) }} \right \} \]