\[ \left (10 \text {Global$\grave { }$x}^2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^3-3 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2-2\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})+5 \text {Global$\grave { }$x} \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^4+\text {Global$\grave { }$x}=0 \] ✓ Mathematica : cpu = 0.205639 (sec), leaf count = 2077
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}+\frac {1}{25 \text {Global$\grave { }$x}^4}}-\frac {1}{2} \sqrt {-\frac {\frac {32}{5 \text {Global$\grave { }$x}^2}+\frac {8}{125 \text {Global$\grave { }$x}^6}}{4 \sqrt {\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}+\frac {1}{25 \text {Global$\grave { }$x}^4}}}-\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}-\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {2}{25 \text {Global$\grave { }$x}^4}}+\frac {1}{10 \text {Global$\grave { }$x}^2}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}+\frac {1}{25 \text {Global$\grave { }$x}^4}}+\frac {1}{2} \sqrt {-\frac {\frac {32}{5 \text {Global$\grave { }$x}^2}+\frac {8}{125 \text {Global$\grave { }$x}^6}}{4 \sqrt {\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}+\frac {1}{25 \text {Global$\grave { }$x}^4}}}-\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}-\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {2}{25 \text {Global$\grave { }$x}^4}}+\frac {1}{10 \text {Global$\grave { }$x}^2}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}+\frac {1}{25 \text {Global$\grave { }$x}^4}}-\frac {1}{2} \sqrt {\frac {\frac {32}{5 \text {Global$\grave { }$x}^2}+\frac {8}{125 \text {Global$\grave { }$x}^6}}{4 \sqrt {\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}+\frac {1}{25 \text {Global$\grave { }$x}^4}}}-\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}-\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {2}{25 \text {Global$\grave { }$x}^4}}+\frac {1}{10 \text {Global$\grave { }$x}^2}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}+\frac {1}{25 \text {Global$\grave { }$x}^4}}+\frac {1}{2} \sqrt {\frac {\frac {32}{5 \text {Global$\grave { }$x}^2}+\frac {8}{125 \text {Global$\grave { }$x}^6}}{4 \sqrt {\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}+\frac {1}{25 \text {Global$\grave { }$x}^4}}}-\frac {\sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}{15 \sqrt [3]{2} \text {Global$\grave { }$x}^2}-\frac {4 \sqrt [3]{2} \left (5 \text {Global$\grave { }$x}^4-10 c_1 \text {Global$\grave { }$x}^2-2\right )}{5 \text {Global$\grave { }$x}^2 \sqrt [3]{2268 \text {Global$\grave { }$x}^2-216 c_1+\sqrt {\left (2160 \text {Global$\grave { }$x}^2+108 \left (\text {Global$\grave { }$x}^2-2 c_1\right )\right ){}^2-4 \left (60 \text {Global$\grave { }$x}^4-120 c_1 \text {Global$\grave { }$x}^2-24\right ){}^3}}}+\frac {2}{25 \text {Global$\grave { }$x}^4}}+\frac {1}{10 \text {Global$\grave { }$x}^2}\right \}\right \}\]
✓ Maple : cpu = 0.03 (sec), leaf count = 28
\[ \left \{ {\frac {{x}^{2} \left ( 5\, \left ( y \left ( x \right ) \right ) ^{4}+1 \right ) }{2}}- \left ( y \left ( x \right ) \right ) ^{3}-2\,y \left ( x \right ) +{\it \_C1}=0 \right \} \]