\[ \left (2 \text {Global$\grave { }$x}^3 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^3-\text {Global$\grave { }$x}\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})+2 \text {Global$\grave { }$x}^3 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^3-\text {Global$\grave { }$y}(\text {Global$\grave { }$x})=0 \] ✓ Mathematica : cpu = 0.0345961 (sec), leaf count = 723
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {2 \text {Global$\grave { }$x}^3-c_1 \text {Global$\grave { }$x}^2}{6 \text {Global$\grave { }$x}^2}+\frac {\sqrt [3]{12 c_1 \text {Global$\grave { }$x}^8-6 c_1^2 \text {Global$\grave { }$x}^7+c_1^3 \text {Global$\grave { }$x}^6+3 \sqrt {3} \sqrt {-24 c_1 \text {Global$\grave { }$x}^{12}+12 c_1^2 \text {Global$\grave { }$x}^{11}-2 c_1^3 \text {Global$\grave { }$x}^{10}+16 \text {Global$\grave { }$x}^{13}+27 \text {Global$\grave { }$x}^8}-8 \text {Global$\grave { }$x}^9-27 \text {Global$\grave { }$x}^4}}{6 \text {Global$\grave { }$x}^2}+\frac {\left (2 \text {Global$\grave { }$x}^3-c_1 \text {Global$\grave { }$x}^2\right ){}^2}{6 \text {Global$\grave { }$x}^2 \sqrt [3]{12 c_1 \text {Global$\grave { }$x}^8-6 c_1^2 \text {Global$\grave { }$x}^7+c_1^3 \text {Global$\grave { }$x}^6+3 \sqrt {3} \sqrt {-24 c_1 \text {Global$\grave { }$x}^{12}+12 c_1^2 \text {Global$\grave { }$x}^{11}-2 c_1^3 \text {Global$\grave { }$x}^{10}+16 \text {Global$\grave { }$x}^{13}+27 \text {Global$\grave { }$x}^8}-8 \text {Global$\grave { }$x}^9-27 \text {Global$\grave { }$x}^4}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {2 \text {Global$\grave { }$x}^3-c_1 \text {Global$\grave { }$x}^2}{6 \text {Global$\grave { }$x}^2}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{12 c_1 \text {Global$\grave { }$x}^8-6 c_1^2 \text {Global$\grave { }$x}^7+c_1^3 \text {Global$\grave { }$x}^6+3 \sqrt {3} \sqrt {-24 c_1 \text {Global$\grave { }$x}^{12}+12 c_1^2 \text {Global$\grave { }$x}^{11}-2 c_1^3 \text {Global$\grave { }$x}^{10}+16 \text {Global$\grave { }$x}^{13}+27 \text {Global$\grave { }$x}^8}-8 \text {Global$\grave { }$x}^9-27 \text {Global$\grave { }$x}^4}}{12 \text {Global$\grave { }$x}^2}-\frac {\left (1+i \sqrt {3}\right ) \left (2 \text {Global$\grave { }$x}^3-c_1 \text {Global$\grave { }$x}^2\right ){}^2}{12 \text {Global$\grave { }$x}^2 \sqrt [3]{12 c_1 \text {Global$\grave { }$x}^8-6 c_1^2 \text {Global$\grave { }$x}^7+c_1^3 \text {Global$\grave { }$x}^6+3 \sqrt {3} \sqrt {-24 c_1 \text {Global$\grave { }$x}^{12}+12 c_1^2 \text {Global$\grave { }$x}^{11}-2 c_1^3 \text {Global$\grave { }$x}^{10}+16 \text {Global$\grave { }$x}^{13}+27 \text {Global$\grave { }$x}^8}-8 \text {Global$\grave { }$x}^9-27 \text {Global$\grave { }$x}^4}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {2 \text {Global$\grave { }$x}^3-c_1 \text {Global$\grave { }$x}^2}{6 \text {Global$\grave { }$x}^2}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{12 c_1 \text {Global$\grave { }$x}^8-6 c_1^2 \text {Global$\grave { }$x}^7+c_1^3 \text {Global$\grave { }$x}^6+3 \sqrt {3} \sqrt {-24 c_1 \text {Global$\grave { }$x}^{12}+12 c_1^2 \text {Global$\grave { }$x}^{11}-2 c_1^3 \text {Global$\grave { }$x}^{10}+16 \text {Global$\grave { }$x}^{13}+27 \text {Global$\grave { }$x}^8}-8 \text {Global$\grave { }$x}^9-27 \text {Global$\grave { }$x}^4}}{12 \text {Global$\grave { }$x}^2}-\frac {\left (1-i \sqrt {3}\right ) \left (2 \text {Global$\grave { }$x}^3-c_1 \text {Global$\grave { }$x}^2\right ){}^2}{12 \text {Global$\grave { }$x}^2 \sqrt [3]{12 c_1 \text {Global$\grave { }$x}^8-6 c_1^2 \text {Global$\grave { }$x}^7+c_1^3 \text {Global$\grave { }$x}^6+3 \sqrt {3} \sqrt {-24 c_1 \text {Global$\grave { }$x}^{12}+12 c_1^2 \text {Global$\grave { }$x}^{11}-2 c_1^3 \text {Global$\grave { }$x}^{10}+16 \text {Global$\grave { }$x}^{13}+27 \text {Global$\grave { }$x}^8}-8 \text {Global$\grave { }$x}^9-27 \text {Global$\grave { }$x}^4}}\right \}\right \}\]
✓ Maple : cpu = 0.138 (sec), leaf count = 770
\[ \left \{ y \left ( x \right ) ={\frac {1}{6\,x}\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}+{\frac { \left ( {\it \_C1}-2\,x \right ) ^{2}x}{6}{\frac {1}{\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}}}+{\frac {{\it \_C1}}{6}}-{\frac {x}{3}},y \left ( x \right ) =-{\frac {1}{12\,x}\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}-{\frac { \left ( {\it \_C1}-2\,x \right ) ^{2}x}{12}{\frac {1}{\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}}}+{\frac {{\it \_C1}}{6}}-{\frac {x}{3}}-{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{6\,x}\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}-{\frac { \left ( {\it \_C1}-2\,x \right ) ^{2}x}{6}{\frac {1}{\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}}} \right ) ,y \left ( x \right ) =-{\frac {1}{12\,x}\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}-{\frac { \left ( {\it \_C1}-2\,x \right ) ^{2}x}{12}{\frac {1}{\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}}}+{\frac {{\it \_C1}}{6}}-{\frac {x}{3}}+{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{6\,x}\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}-{\frac { \left ( {\it \_C1}-2\,x \right ) ^{2}x}{6}{\frac {1}{\sqrt [3]{ \left ( {{\it \_C1}}^{3}{x}^{2}-6\,{{\it \_C1}}^{2}{x}^{3}+12\,{\it \_C1}\,{x}^{4}-8\,{x}^{5}+3\,\sqrt {-6\,{{\it \_C1}}^{3}{x}^{2}+36\,{{\it \_C1}}^{2}{x}^{3}-72\,{\it \_C1}\,{x}^{4}+48\,{x}^{5}+81}-27 \right ) x}}}} \right ) \right \} \]